D2 Paper A - Marking Guide

1. e.g. using stage, state approach:

Stage	State	Action	Destination	Total Distance
1	G	GI	I	12*
	H	HI	I	10*
2	D	$\begin{aligned} & D G \\ & D H \end{aligned}$	$\begin{aligned} & G \\ & H \end{aligned}$	$\begin{aligned} & 14+12=26^{*} \\ & 17+10=27 \end{aligned}$
	E	$\begin{aligned} & E G \\ & F H \end{aligned}$	$\begin{aligned} & G \\ & H \end{aligned}$	$\begin{aligned} & 12+12=24^{*} \\ & 18+10=28 \end{aligned}$
	F	$\begin{aligned} & F G \\ & F H \end{aligned}$	$\begin{gathered} \hline G \\ H \end{gathered}$	$\begin{aligned} & 13+12=25^{*} \\ & 19+10=29 \end{aligned}$
3	A	$\begin{aligned} & A D \\ & A E \\ & A F \end{aligned}$	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & 8+26=34^{*} \\ & 10+24=34^{*} \\ & 14+25=39 \end{aligned}$
	B	$\begin{aligned} & B D \\ & B E \\ & B F \end{aligned}$	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & 12+26=38 \\ & 10+24=34^{*} \\ & 16+25=41 \end{aligned}$
	C	$\begin{aligned} & C D \\ & C E \\ & C F \end{aligned}$	$\begin{aligned} & D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & 9+26=35^{*} \\ & 13+24=37 \\ & 15+25=40 \end{aligned}$
4	Home	Home-A Home-B Home-C	$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 15+34=49 \\ & 11+34=45^{*} \\ & 13+35=48 \end{aligned}$

giving route HomeBEGI, total distance 450 miles

2 need to add dummy column giving

$$
\begin{array}{llll}
19 & 69 & 168 & 0 \\
22 & 64 & 157 & 0 \\
20 & 72 & 166 & 0 \\
23 & 66 & 171 & 0 \\
- & - & - & -
\end{array}
$$

col min. 19641570
reducing rows will make no difference
B1
reducing columns gives:

$$
\begin{array}{ccccc}
0 & 5 & 11 & 0 & \\
3 & 0 & 0 & 0 & \\
1 & 8 & 9 & 0 & \text { (N.B. a different choice of lines will } \\
4 & 2 & 14 & 0 & \text { lead to the same final assignment) }
\end{array}
$$

3 lines required to cover all zeros, apply algorithm

$$
\begin{array}{cccc}
0 & 5 & 11 & 1 \\
3 & 0 & 0 & 1 \\
0 & 7 & 8 & 0 \\
3 & 1 & 13 & 0
\end{array}
$$

3 lines required to cover all zeros, apply algorithm

$$
\begin{array}{cccc}
0^{*} & 4 & 10 & 1 \\
-4 & 0 & 0^{*} & 2 \\
0 & 6 & 7 & 0^{*} \\
3 & 0^{*} & 12 & 0
\end{array}
$$

4 lines required to cover all zeros so allocation is possible
stage 1 - Alex, stage 2 - Suraj, stage 3 - Darren, Leroy does not take part A1
3. (a)

(b) lower figures give forward scan

M1
upper figures give backward scan M1
critical path is $A B D G J K$
minimum time is 37 hours
(c) $28-20=8$ hours

B1
(10)
4.
(a) $C_{1}=80 ; C_{2}=94$
(b) minimum cut: $\{S, A, B, C, D, F\} \mid\{E, T\}=57$
(c) $x=15, y=10, z=36$
(d) augment SCET by 2 and SCAET by 1 giving maximum flow below

max. flow $=57$
this is maximum flow as it is equal to the minimum cut

M2 A2
B1 (11)
5. (a) let X play strategies X_{1} and X_{2} with proportions p and $(1-p)$ expected payoff to X against each of Y 's strategies:
$Y_{1} \quad 10 p-4(1-p)=14 p-4$
$Y_{2} \quad 4 p-(1-p)=5 p-1$
M1 A1
$Y_{3} \quad 3 p+9(1-p)=9-6 p$
giving

$p=0 \quad p=1$
it is not worth player Y considering strategy Y_{1}
for optimal strategy $5 p-1=9-6 p$ M1

$$
\therefore 11 p=10, p=\frac{10}{11}
$$

$\therefore X$ should play $X_{1} \frac{10}{11}$ of time and $X_{2} \frac{1}{11}$ of time A1
(b) let Y play strategies Y_{2} and Y_{3} with proportions q and $(1-q)$
expected loss to Y against each of X 's strategies:
$X_{1} \quad 4 q+3(1-q)=q+3$
$X_{2} \quad-q+9(1-q)=9-10 q$
for optimal strategy $q+3=9-10 q$

$$
\therefore 11 q=6, q=\frac{6}{11}
$$

$\therefore Y$ should not play Y_{1}, should play $Y_{2} \frac{6}{11}$ of time and $Y_{3} \frac{5}{11}$ of time A1
(c) value $=\left(5 \times \frac{10}{11}\right)-1=3 \frac{6}{11}$

A1
6. (a) maximise $R=4 x+10 y+2 z$
subject to $x-y \leq 5$
$-y+2 z \leq 0$
$2 x+4 y+z \leq 40$
$x \geq 0, y \geq 0, z \geq 0$
M1 A2
(b) to change inequalities into equations

B1
(c) only one positive value so pivot row is $4^{\text {th }}$ row
$2^{\text {nd }}$ tableau is:

R	x	y	z	r	s	t	
1	1	0	$\frac{1}{2}$	0	0	$\frac{5}{2}$	100
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	$\frac{1}{4}$	15
0	$\frac{1}{2}$	0	$\frac{9}{4}$	0	1	$\frac{1}{4}$	10
0	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0	$\frac{1}{4}$	10

(d) final tableau as all values on the objective row are ≥ 0

B1
(e) centre provides 10 courses for adults (not pensioners) and gets $£ 100$ revenue per day
(f) no. e.g. the slack variable s associated with this constraint is not zero so optimal solution without this constraint would be the same

B1

